
BProc: The Beowulf Distributed Process Space

Erik Hendriks
Advanced Computing Laboratory
Los Alamos National Laboratory∗

Los Alamos, NM
hendriks@lanl.gov

ABSTRACT
The Beowulf Distributed Process Space (BProc) is a set of
Linux kernel modifications which provides a single system
image and process migration facilities for processes running
in a Beowulf style cluster. With BProc, all the processes
running in a cluster are visible on the cluster front end ma-
chine and are controllable via existing UNIX process control
mechanisms. Process creation is done on the front end ma-
chine and the processes are placed on the nodes where they
will run with BProc’s process migration mechanism.

These two features combined greatly simplify creating and
cleaning up parallel jobs as well as removing the necessity
of a user login to remote nodes in the cluster. Removing
the need for user logins drastically reduces the mount of
software required on cluster nodes.

Job startup with BProc’s process migration mechanism
is faster than the traditional method of logging into a node
and starting the process with rsh. BProc does not affect
file or network I/O of processes running on remote nodes
so the vast majority of MPI applications will experience no
performance loss as a result of being managed by BProc.

Categories and Subject Descriptors
C.2.4 [Computer-communication Networks]: Network
Operating Systems; D.4.1 [Operating Systems]: Process
Management; D.4.7 [Operating Systems]: Distributed
Systems

General Terms
Design,Management

Keywords
Linux, cluster, single system image, process migration

∗Los Alamos National Laboratory is operated by the Univer-
sity of California for the National Nuclear Security Admin-
istration of the United States Department of Energy under
contract W-7405-ENG-36. LANL LA-UR-02-2583.

This paper is authored by an employee(s) of the United States Government
and is in the public domain.
ICS’02, June 22-26, 2002, New York, New York, USA.
ACM 1-58113-483-5/02/0006.

1. INTRODUCTION
Traditionally, Beowulf style cluster computers have been

set up as a collection of autonomous machines running Linux
each with a local disk and its own Linux installation. Start-
ing a parallel job on n nodes requires logging into n nodes
and running some command there. Much of this complex-
ity is normally hidden by communication libraries such as
PVM [3] and MPI [4]. However, users still need to know
enough about the system configuration to make sure that
the libraries will be able to find the binary images to exe-
cute on each node.

Once a parallel job is started, monitoring and controlling
the job is a problem. Viewing what a job is doing requires
querying every node that a job is running on for process
status. This is both time consuming and clumsy. The lack
of readily available job status leads to runaway jobs being
left on nodes because most users simply do not think to
actively look for errant processes most of the time.

Current solutions to these problems [7, 2] all add addi-
tional layers of software. This additional software increases
the complexity of the system (new programs for users to use,
new daemons for nodes to run) and adds possible points of
failure.

The Beowulf Distributed Process Space (BProc) is a
Linux kernel modification which addresses the process cre-
ation and management problem by providing a single system
image for all the processes in the cluster combined with a
process migration mechanism to populate the cluster with
processes.

BProc extends the existing process management infras-
tructure in Linux to include processes running on other ma-
chines. This means that all existing UNIX process man-
agement utilities work for entire parallel jobs. Users can
see their entire parallel job state with ps on the front end
machine. Killing entire jobs is as easy as sending a signal
to a process group or running the standard Linux killall

command.
BProc’s process migration facility allows for fast and sim-

ple parallel job startup without having to worry about dis-
tributing binary images to nodes. This greatly simplifies
some existing pieces of cluster infrastructure such as sched-
ulers which now contain a large amount of code to create
and control processes on many machines in a cluster.

2. OVERVIEW
In a BProc cluster, there is a single master (or front end)

machine and many slave machines which receive and run
processes from the master. All the processes distributed to



���
���
���
���

���
���
���
���

���
���
���
���
���

���
���
���
���
���

�����
�����
�����
�����

�����
�����
�����
�����

���
���
���
���

���
���
���
���

	�	�	
	�	�	
	�	�	
	�	�	
	�	�	


�


�


�


�


�


�����
�����
�����
�����

���
���
���
���

Master Slave

Figure 1: An example process tree spanning two ma-
chines. The shaded processes on the slave machine
exist in the master’s process space. The two dot-
ted boxes in the master’s process tree are the ghost
processes which act as place holders representing the
corresponding remote processes which are running
on the slave node.

the slave machines are visible on the master in the same
manner as any other process. Existing UNIX process view-
ing utilities will show remote processes without modifica-
tion. Signals are forwarded transparently to remote pro-
cesses. The usual parent/child relationships between pro-
cesses are maintained regardless of process location.

The process migration facility simplifies the creation of re-
mote processes in the cluster. With BProc, all the processes
in a parallel job are started on the master and migrated
to the nodes where they will run. Users no longer need to
ensure that application binaries are available on remote ma-
chines. Process startup in libraries such as MPI becomes
trivial. Once running, the usual UNIX process group rules
apply so entire parallel jobs started in this fashion can be
controlled by sending signals to process groups (i.e. Ctrl-C
from the command line).

System management is dramatically simplified. Simple
remote process control facilities eliminate much of the work
currently done by schedulers. Fewer daemons (all of which
represent a possible point of failure) are required. BProc
only requires a single daemon to have a functioning slave
node.

BProc is a Linux kernel modification which extends the fa-
miliar UNIX process semantics of a single machine to include
processes which are running on different machines. Specifi-
cally, it allows a portion of one machine’s process space to
exist on one or more other machines. A process space is a
pool of process IDs and the parent/child relationships that
make up its process tree. Every instance of Linux defines
a single process space. The machine that is distributing its
process space is the master or front end. The machines ac-
cepting pieces of a master’s process space are called slaves.

BProc does not provide a global process space. The mas-
ter and slaves are not peers in BProc. The master node
maintains control over the process space that it is distribut-
ing to the slave. The slaves do not lose their own process
space because they are running a piece of the master’s pro-
cess space. A slave node will have local processes which are
not managed by the master node and some processes that
are. The daemon the slave must run in order to become a
slave is a local process which the master does not control.

DAEMON
MASTER

KERNELKERNEL

DAEMON
SLAVE

SLAVE

KERNEL

DAEMON
SLAVE

SLAVE

KERNEL

DAEMON
SLAVE

SLAVE

KERNEL

DAEMON
SLAVE

SLAVE

MASTER

Figure 2: Component interconnection in BProc. All
slave machines connect to the master daemon. The
master daemon is the router at the center of the sys-
tem. It routes BProc messages between the kernel
layer and the daemons.

A slave can accept processes from multiple masters at the
same time.

The system image that users see is only completely present
on the master node. The slaves only see the portion of the
process space which is present on that machine. Processes
running on the slaves can still access other parts of the pro-
cess space but system calls such as kill may have to be
forwarded to the master.

Figure 1 shows a simple example where a part of the mas-
ter’s process space is on another machine. The shaded pro-
cesses exist in the master’s process space. The slave node is
running two remotely managed processes. The shaded pro-
cesses would appear in the slave’s process tree if you were to
log into the slave node. They are tagged as being remotely
managed. When the shaded processes running on the slave
make process related system calls (like getpid or kill), they
will be handled differently than the other processes on that
machine. For example, the shaded processes on the slave
cannot send signals to other processes on the slave since the
other processes are outside the process space in which the
shaded processes exist. If the shaded processes attempt to
send a signal to one of the processes on the master node,
the signal will be forwarded transparently.

The dotted boxes in the master’s process space are place
holders called ghosts which are inserted to represent remote
processes. When a user looks at the process tree on the
front end, they will see one ghost for every remote process.
It is impossible for a process running on a remote node to
disappear from the master’s process tree without exiting.
It is also impossible for a remote process to create child
processes which do not appear in the master’s process tree.

3. IMPLEMENTATION
The bulk of the BProc system is in the kernel modifica-

tions. Both the master’s and the slave’s kernels are modi-
fied to support BProc. On the master, there are the place
holders in the process tree to represent processes running
on remote machines. On the slave, the process ID (PID)



related system calls are modified to behave differently for
remotely managed processes.

The in-kernel portions of BProc are tied together with
pair of user space daemons. Figure 2 shows the connections
between the kernels and daemons. The master daemon is
the hub of the system connecting the master’s kernel and
the slaves together. The slaves do not send BProc messages
directly to one another.

The complete machine state is split between the master
daemon and the kernel on the front end. The kernel on the
front end has a complete picture of the process tree and
the master daemon knows on which node each remote pro-
cess exists. If the kernel cannot handle something locally, a
request is passed out to the user space daemon. The ker-
nel code on the master and slaves only knows if processes
are “here” or “not here”. The user space daemons handle
getting all requests to the proper receiver.

The slave daemons only see snippets of the process tree
that involve the processes running on that slave. The slave
daemon doesn’t maintain any state of its own. It will sim-
ply forward most messages and handle some others such as
signal delivery and ptrace requests.

The only pieces that BProc needs to keep coherent are
the snippets of process trees that exist on slave nodes and
the corresponding parts of the process tree on the master.
There are no coherency requirements between slaves.

3.1 Master - Ghost Processes
The place holders in the master’s process tree are called

ghost processes. There is one ghost for every remote pro-
cess. Ghost processes are lightweight kernel threads. They
have no user level memory space or open files. They are real
processes which means they can wake up and run but they
never leave kernel space. Since ghosts are kernel threads
they are guaranteed to not disappear until the remote pro-
cess they represent exits. Using real processes to represent
remote processes on the master allows BProc to reuse all
the existing Linux process infrastructure.

Ghosts are idle the vast majority of the time but they do
occasionally wake up to forward a signal or to perform a
system call on behalf of a remote process. There are rela-
tively few situations in which a ghost will be required to act.
Table 1 shows all the system calls which may require some
action by the ghost.

In order to ensure that the ghost process is always run-
ning with the same user, group and process group IDs as
the remote process, the system calls which affect those IDs
notify the ghost of any changes. The ptrace system call
also requires help from the ghost in many cases.

Ghost processes are functionally equivalent to the real
processes for all the process ID related system calls. Ghosts
catch and forward any signals they receive to the remote pro-
cesses they represent. Since they are kernel threads, ghosts
can catch and forward all signals including SIGKILL and
SIGSTOP without exiting or stopping. If the ghost is not
involved in performing some system call for the remote pro-
cess, then the process sending the signal will hand the signal
directly on the outgoing message queue without waking the
ghost.

Ghosts are also suitable targets for the ptrace system
call. Debugging tools such as gdb [6] and strace can attach
to ghost processes. All ptrace requests are transparently
forwarded to the node where the real process exists.

System Call Explanation
fork,wait Both the fork and wait system calls mod-

ify the process tree. The master needs to
be involved to make sure that the pro-
cess tree on the master matches what the
slave.

exit When a remote process exits, the ghost
exits with the same status.

kill If the process being signaled does not ex-
ist on the same slave node, the ghost will
perform the kill system call on behalf of
the remote process.

ptrace ptrace attach and detach make modifi-
cations to the process tree that must be
reflected in the master’s process tree. If
the process being traced does not exist on
the same machine, other ptrace calls (i.e.
PEEK and POKE) will be performed by the
ghost.

set*id All the calls which modify a process’s
user, group, process group or session IDs
require interaction with the ghost because
the ghost process needs to reflect the
change.

Table 1: System calls that may require action by the
ghost process to complete.

Since ghost threads are real processes, they have real sta-
tus of their own - running/sleeping, CPU time used, etc.
The remote process is the one users are interested in so
ghosts mirror the process status of the remote processes
they represent. The /proc file system is slightly modified
to present the mirrored status instead of the real status for
ghost processes. The mirrored status information is updated
on demand when a process accesses the /proc file system.

When a remote process exits, the ghost exits with the
same exit status. The parent process can use a normal
wait system call to pickup the exit status. The ghost can
exit with the full range of possible exit conditions, including
those indicating “killed by a signal” and “core dumped”.

3.2 Slave Nodes - Process ID Masquerading
Slave nodes accept processes to run from the master node.

When transplanting a process from the master to a slave, a
few problems arise. The process ID of the process should
not change when it moves but we cannot guarantee that a
particular process ID will be available on the destination
machine. Once the process exists on the remote machine,
process ID related system calls such as kill should continue
to operate in the context of the master’s process space.

These problems are solved on the slave by putting a sec-
ond process ID on processes received from the master node.
When the slave receives a process, it creates a normal local
process for it. This process exists in the slave’s process space
and will be assigned a local process ID as usual. The slave
will then attach a second process ID to the process. The pro-
cess ID related system calls (i.e. getpid, wait) are modified
to translate or return alternate process IDs for these pro-
cesses. Having the second process ID also indicates that the
process’s process ID related operations are to be managed
by a third party.



For example, the getpid system call is modified to check
for the second process ID. If it exists, it returns that ID,
otherwise it returns the real process ID.

Figure 3 illustrates a fork request. If a process decides to
fork, the child should be in the same process space as the
parent. Creating the child process locally happens through
the normal fork mechanism but before the fork returns and
the child is allowed to run, the slave will contact the master
node for a process ID to assign to the child.

In order to allocate a new process ID, the ghost process
will perform a fork itself and return the new child process
ID to the real process running on the slave node. Obtaining
a new process ID this way has an important side effect -
a new ghost is created on the master to represent the child
process. This keeps the process trees on the master and slave
synchronized. Resource limits governing the total number
of processes are also enforced on the master. Once the new
child (which is also a ghost) is created on the master, it
will return its process ID back to the parent process on the
remote machine. The master daemon makes note of the
new process and its location when it sees a successful fork
response. When the new process ID is received on the slave,
the process ID is attached to the child process and the fork

system call is allowed to complete. There is no way for a

process running on a remote node to create a process which

is not visible in the master’s process tree.

The wait system call also involves the ghost process. It
is essentially the inverse of fork (the ghost is cleaning up
children instead of creating them) except that the slave does
not need to wait for the result before continuing.

3.3 Daemons
Every machine runs a user space daemon which handles

passing BProc messages on the network. The master and
slaves communicate with each other using TCP. The BProc
kernel code does not send and receive on the network di-
rectly except while transferring data during process migra-
tion. The daemons communicate with their local kernel us-
ing a special file handle.

The master runs a daemon which listens for new connec-
tions and maintains an open connection to each slave in the
system. The slave nodes each run a slave daemon. A node
becomes visible on the master when the slave daemon con-
nects to the master. If the connection is broken for any
reason, all the processes running on that slave daemon will
be killed. Other slaves in the system are unaffected.

The master daemon is BProc’s message router and all
BProc message traffic runs through it. This is necessary
because the master daemon is the only part of the system
that knows where each process exists. It also needs to know
when processes are moving from one place to another.

When a process moves from one slave node to another,
the BProc message traffic runs through the master both for
routing and so that the master can update the machine state
to reflect the move. The data sent to migrate the process
between the slaves does not pass through the master dae-
mon. The slaves establish a new connection directly to one
another to send the process data.

The slave daemon is essentially a stateless message pipe
between the master daemon and the slave’s kernel which
sometimes gets involved in message handling. For example,
the slave daemon will fork to create new processes on the

08048000-08049000 r-xp 00000000 03:01 288816 /bin/sleep
08049000-0804a000 rw-p 00000000 03:01 288816 /bin/sleep

40000000-40012000 r-xp 00000000 03:01 911381 /lib/ld-2.1.2.so
40012000-40013000 rw-p 00012000 03:01 911381 /lib/ld-2.1.2.so
40017000-40102000 r-xp 00000000 03:01 911434 /lib/libc-2.1.2.so

40102000-40106000 rw-p 000ea000 03:01 911434 /lib/libc-2.1.2.so
40106000-4010a000 rw-p 00000000 00:00 0

bfffe000-c0000000 rwxp fffff000 00:00 0

Figure 4: Example memory space for /bin/sleep.
This is taken directly from /proc/pid /maps.

node and will sometimes be involved in performing remote
ptrace requests.

3.4 Process Migration With BProc
VMADump (Virtual Memory Area Dumper) is the system

used by BProc to take a running process and copy it to a
another node. VMADump is part of BProc but is usable
as a separate component. VMADump saves or restores a
process’s memory space to or from any file descriptor which
supports write and read. In the case of BProc, the file
descriptor is a TCP socket established between two nodes.

VMADump works by walking the list of memory mapped
regions in the process and storing the contents of each region
on the file descriptor. The CPU state, signal handler state
and other miscellaneous process details are also sent.

The contents of the process’s memory space is preserved
with the following exceptions. Any regions of memory which
were once shared will no longer be shared. Any regions
mmaped from a file that are not shared libraries will no longer
be mapped from the file.

Most programs on the system are dynamically linked. At
run time, they will use mmap to map copies of various libraries
into their memory spaces. Since they are demand paged, the
entire library is always mapped even if most of it will never
be used. These regions must be included when copying a
process’s memory space. This is expensive since the size of
the dynamically loaded libraries is often much larger than
the programs they are linked against.

Figure 4 shows a simple example memory space. The total
size of the memory space for this trivial program is 1089536
bytes. All but 32K of that comes from shared libraries -
VMADump takes advantage of this.

VMADump can avoid copying these memory regions when
migrating a process if we are willing to guarantee that the
libraries that they are mapped from will be present on the
remote machine. Instead of storing the data contained in
each of these regions, it stores a reference to the file and the
offset from which the region was mapped. When the image
is restored, those files will be mmaped to the same memory
location.

In order for this optimization to work, VMADump must
know which files it can expect to find where the process im-
age is restored. Since VMADump does not know anything
about binary formats and therefore cannot directly recog-
nize libraries, it simply has a list of files which it presumes
are present on remote systems. VMADump looks at what
file every region is mapped from. If that file is on the list,
VMADump will presume that the file is available on the
remote machine and store a reference to the file.

Pages which are duplicated via the copy-on-write mech-
anism will be recognized and sent along with the file refer-
ence. It is not uncommon for the dynamic linker to modify



���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

Send fork() request
to get PID for child.

Assign new PID
to child process.

Make child runable.

M
as

te
r 

D
ae

m
on

Sl
av

e 
D

ae
m

on

SLAVE MASTER

Respond with PID
after ghost setup.

NEW GHOST

Call fork() to
create new child.

GHOST

Kernel Space

Create child process.

Request

USER PROCESS

Call fork()

fork() returns

Response

Figure 3: The fork system call. A user process calls fork. The child process is created on the slave node
but not yet allowed to run. A fork request is sent to the user process’s ghost to allocate a new process
ID. The message is routed through the user level daemons and across the network. The ghost calls fork to
create a new child on the master node. The new child process on the master (also a ghost) responds to the
request once it has finished adding itself to the list of ghosts. The master daemon watches for successful fork
responses and makes note of the position of the new remote process. Finally, the new process ID is attached
to the child process on the slave node, the child is allowed to run and fork returns to the caller.

a few pages in a dynamic library (which was mapped with
MAP PRIVATE) and then mark the entire region read only.
VMADump can perform this check from kernel space with-
out faulting in all the pages in the mapped region.

A similar optimization avoids sending huge uninitialized
data segments. Programs are frequently started on the front
end and immediately migrated to the remote nodes via the
bproc execmove mechanism. If the program has a large,
uninitialized data segment (BSS) the program’s memory
footprint could be huge but consist mostly of empty zero
pages. Hundreds of megabytes of uninitialized data is not
uncommon. VMADump checks for zero pages before send-
ing them. The restoring process will initialize any page for
which no data was received to zero, so zero pages are not
sent at all. Checking for zero pages on a large BSS segment
is relatively cheap since VMADump can perform the check
without faulting in unallocated pages.

Process migration with BProc is non-preemptive and non-
transparent. Once a process has been moved all its open file
handles are closed. Any file related calls will be handled
on the local machine. The process will see the local file
system and network operations will reflect being on the new
machine.

The only system calls which will not reflect the move are
the process ID related operations such as fork, wait, kill,
etc. The process ID of the process will not change. If the
process had children, those will still be present in the context
of wait. In short, the process will still appear to be part of
the original process space.

Due to the extent of visible changes that happen dur-
ing migration, migration is entirely voluntary. There is no
mechanism for one process to cause another to migrate.

3.5 User API
User programs use BProc via a system call interface. The

BProc API includes functions to get and set information

about the nodes in the cluster and process migration calls.
Since there is no third party process migration in BProc an
application must use one of the following calls to migrate to
a remote node.

int bproc move(int node )

bproc move is the basic process migration call. The
calling process is moved to node. It simply returns
zero on success or -1 if there is an error. All the
other process migration calls are internally based on
bproc move.

int bproc rfork(int node )

bproc rfork is a normal fork followed by a
bproc move. The fork is done on the machine where
the call is made. The reason bproc rfork is relevant
is that the calling process will not end up with a child
process if the fork step succeeds but the bproc move

fails.

C code for performing some task on a child process
(without error checking) might be as simple as the fol-
lowing:

if (bproc_rfork(node_number) == 0) {

/* Code for task on remote node */

} else {

wait(0); /* Wait for child to finish */

}

int bproc execmove(int node, const char *cmd,

char * const argv [], char * const envp [])

bproc execmove combines the execve and bproc move

system calls. First, the normal execve is performed
and then without returning to user space and letting



2MB 4MB 6MB 8MB 10MB 12MB

Image size

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20
ti

m
e 

(s
ec

)
BProc process migration time

Figure 5: Process migration time. This graph shows
the time required to migrate between two nodes in
the cluster. The time shown was obtained by mi-
grating to a node and back and then dividing the
elapsed time by two. The image size is the amount
of data that the BProc migration functions actually
send, not the size of the program’s binary file.

the new program run, a bproc move is performed to
move the process to the remote node.

This mechanism is used to start arbitrary binaries on
one node and let them run on another. BProc based
clusters use this mechanism for starting MPI applica-
tions which need not be aware of BProc. This is also
used for setting up nodes at boot time by migrating
programs such as mount and ifconfig to the node.

4. PERFORMANCE
BProc only affects process ID related operations. All

other system calls are handled locally. Once a process has
moved to a remote machine, all the file I/O and network I/O
is local to the node and just as fast as it would be without
BProc.

BProc’s single system image only covers the process re-
lated aspects of UNIX. Everything else is untouched on re-
mote machines. Once a process has moved to a remote ma-
chine, all file I/O and network I/O is local to the node on
which the process is running. Most parallel applications
should experience no performance penalty when running on
a slave node. Most anything that does not spend a signifi-
cant amount of time in fork, wait or kill will experience
no added overhead as a result of BProc.

On the master node, there are a large number of processes
in the process table at any given time. Ghosts do very little
on behalf of their remote processes which means that they
are all asleep practically all of the time. Their presence will
not affect the master’s system performance as long as they
sleep.

The only processes which should be affected by the pres-
ence of ghosts in the system are processes which are read-
ing /proc entries belonging to a ghost process or processes
performing ptrace requests on a ghost. Reading a ghost’s
/proc entries may trigger a ghost status refresh which takes
some time to complete.

0 10 20 30 40 50 60 70 80 90 100

Nodes

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

ti
m

e 
(s

ec
)

BProc process startup time
35K
2 MB
6 MB
10 MB

Figure 6: Process startup time using the vexecmove

facility for various process sizes. This graph shows
the amount of time required for BProc to place a
copy of an arbitrary program on different numbers
of nodes in the system. The process size is the
amount data that the BProc migration functions ac-
tually send, not the size of the program’s binary file.

Since the master node is the message router in BProc, all
BProc message traffic passes through the master node. Mes-
sage traffic is typically very light. When remote processes
are being created, the messages initiating remote process
creation and returning success or failure run through the
front end node. The data transfered to create the new pro-
cess image will not necessarily pass through the front end.

Once a parallel application is started (i.e. a typical MPI
job) there is very little message traffic in the system. A
remote process doesn’t communicate with the master at all
if it does not call any of the system calls which require help
from the master node (fork, wait, etc.)

The only remaining traffic is the occasional heartbeat and
process status update requests. The frequency of remote
process status updates is limited to once every five seconds.
These updates will only be requested if there is an applica-
tion (i.e. ps) actively looking at a ghost’s process status.

4.1 Performance Results
The testbed used to test performance is an Alpha Linux

cluster (“ed”). It consists of a master and 100 slave nodes
made up of the following hardware and software:

• 5 x Compaq ES40 (4 CPUs @ 833MHz, 16GB RAM)

• 94 x Compaq DS10L (1 CPU @ 466MHz, 1GB RAM)

• 2 x API CS20 (2 CPUs @ 833MHz, 2GB RAM)

• Myrinet 2000 with GM 1.5.1

• Linux 2.4.18 with BProc 3.1.10

One of the ES40s served as the cluster front end. All
BProc’s communication used TCP/IP over Myrinet. The
machine was unloaded during testing.

Figure 5 shows the time required for the basic process
migration operation in BProc. The test program migrated



from the master node to a slave node and back and divided
the elapsed time by two. The round trip time was aver-
aged over 100 iterations. The minimum process size tested
was 160K. This is approximately the minimum process im-
age size for a dynamically linked program on these systems.
The migration time for that size image averaged 4.2 msec.
For larger process sizes, the time required to migrate is dom-
inated by the time required to send the image. Note that
the size of the image is the amount of data actually trans-
mitted by the BProc process migration system, not the size
of the program’s binary file.

Figure 6 shows the time required to startup many pro-
cesses using BProc’s vexecmove facility for various process
sizes. vexecmove transparently uses a tree spawn mecha-
nism to more efficiently distribute the process image to all
the nodes. This test measured the amount of time required
to place a single copy of a process on each node. The pro-
gram used for this test does nothing, just returns from main.
Padding was added to this program to test larger process
sizes.

As an experiment to see how many remote processes the
master node could handle, a test was done starting 15000
remote processes on 100 machines (150 processes per ma-
chine). The test program used vrfork to place a copy of
itself on every node and then used normal fork to create
150 copies of itself on each node. Once completed all these
processes were visible on the front end using ps. This test
averaged 2.3 seconds to complete. With that many processes
in the system process viewing utilities such as ps became
unwieldy — they open almost every file in /proc (there are
several files per process) which makes them very slow.

5. RELATED WORK
Mosix [1] is a system which provides transparent pro-

cess migration facilities for the purposes of load balancing.
Transparent in this case means that a process will not have
any indication that it has been moved to a remote node.
The key difference between BProc and Mosix is that Mosix
provides preemptive and completely transparent process mi-
gration. This is required if Mosix is to achieve its goal of
load balancing a cluster without any cooperation from the
applications running on it. Completely transparent migra-
tion is much more costly to achieve. In Mosix, the node
where the process started (the process’s home node) is in-
volved in servicing many more system calls (file system calls,
network I/O calls, etc.) than in BProc. This is necessary
to maintain the transparency of process migration in Mosix.
I/O intensive parallel applications may be reasonably sup-
ported in a Mosix cluster by starting each job on a different
home node. This, however, defeats the purpose of having a
single system image for job management.

BProc does not offer transparent or preemptive migration
but adds much less overhead on runtime after migration.
I believe this is a good trade-off for supporting MPI style
parallel applications for which performance of system calls
(particularly of I/O related system calls) is very important.

Condor [5] is another system which provides process mi-
gration. Condor is a cycle scavenging system with a check-
pointing system which allows applications to be moved be-
tween systems. It’s designed to tie together a large collection
of heterogeneous UNIX systems with distributed ownership.
Unlike BProc, it is implemented entirely in user space. This
has the advantage that it can run on many different types

of UNIX machines. It also does not require kernel modi-
fications that system administrators may not be willing to
make. This means that applications running under Condor
need to be linked against special libraries to make use of its
features but most people have access to the code they’re run-
ning and this can be done with minimal effort. Condor also
provides some system call forwarding for processes running
on remote machines which makes the migration somewhat
more transparent. This remote I/O does, however, take a
performance hit much like Mosix.

BProc’s migration mechanisms are implemented entirely
in kernel space which means they can be used with arbi-
trary statically or dynamically linked binaries. This makes
mechanisms such as bproc execmove possible.

6. FUTURE WORK
VMADump represents a large portion of a possible check-

pointing system. It will currently only save and restore sin-
gle threaded processes. Adding support for multi-threaded
programs and programs which share regions of memory will
be necessary for creating a workable checkpointing system.

It remains to be seen how far BProc will scale. Having
successfully managed many thousands of processes from a
single master node, it seems that the Linux process infras-
tructure will be fine for a large system. So far the largest
number of physical machines managed with a single BProc
master is on the order of 256 machines. At that scale, there
are no apparent issues with the master node — the obvious
bottleneck in the system.

7. CONCLUSIONS
BProc provides simple process creation and control mech-

anisms for Linux based compute clusters. Remote process
creation via process migration removes the need to make
user’s binaries available on all the nodes in a system. The
monitoring capabilities combined with process migration re-
moves the need for users to log into the nodes in a cluster.
Without the login and local binary requirement, essentially
all the software can be removed from the node reducing the
number of points of failure and reducing the software man-
agement burden to zero. The ease of placing and managing
processes on remote machines with BProc greatly simplifies
existing pieces of common cluster software such as MPI and
schedulers. Finally, the lack of any run time performance im-
pact on the vast majority of MPI applications makes BProc
a very attractive management system for compute clusters.

BProc currently supports x86, Alpha and Pow-
erPC platforms. BProc is open source soft-
ware licensed under the terms of the GPL and
is available at http://bproc.sourceforge.net and
http://www.clustermatic.org.

8. REFERENCES
[1] Amnon Barak, Oren La’adan, and Amnon Shiloh.

Scalable cluster computing with MOSIX for Linux. In
Proceedings of the Linux Expo ’99, pages 95–100,
Raleigh, NC, May 1999.

[2] Greg Bruno and Philip M. Papadopoulos. NPACI
Rocks: Tools and Techniques for Easily Deploying
Manageable Linux Clusters. October 2001.

[3] A Geist, A Beguelin, J Dongarra, W Jiang,
R Manchek, and V Sunderam. PVM: Parallel Virtual



Machine. A Users’ Guide and Tutorial for Networked

Parallel Computing. MIT Press, 1994.

[4] William Gropp, Ewing Lusk, and Anthony Skjellum.
Using MPI: Portable Parallel Programming with the

Message Passing Interface. MIT Press, 1994.

[5] Miron Livny, Jim Basney, Rajesh Raman, and Todd
Tannenbaum. Mechanisms for high throughput
computing. SPEEDUP Journal, Vol. 11, No.1, June
1997.

[6] R.M. Stallman. GDB manual. Second edition, Free
Software Foundation, Inc., February 1988.

[7] The Open Cluster Group. OSCAR: A packaged cluster
software stack for high performance computing.
January 2001.


